Simulation optimization for industrial scheduling using hybrid genetic representation

  • Authors:
  • Marcus Andersson;Amos H. C. Ng;Henrik Grimm

  • Affiliations:
  • University of Skövde, Sweden;University of Skövde, Sweden;University of Skövde, Sweden

  • Venue:
  • Proceedings of the 40th Conference on Winter Simulation
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Simulation modeling has the capability to represent complex real-world systems in details and therefore it is suitable to develop simulation models for generating detailed operation plans to control the shop floor. In the literature, there are two major approaches for tackling the simulation-based scheduling problems, namely dispatching rules and using meta-heuristic search algorithms. The purpose of this paper is to illustrate that there are advantages when these two approaches are combined. More precisely, this paper introduces a novel hybrid genetic representation as a combination of both a partially completed schedule (direct) and the optimal dispatching rules (indirect), for setting the schedules for some critical stages (e.g. bottlenecks) and other non-critical stages respectively. When applied to an industrial case study, this hybrid method has been found to outperform the two common approaches, in terms of finding reasonably good solutions within a shorter time period for most of the complex scheduling scenarios.