Using Sum of Squares Decomposition for Stability of Hybrid Systems

  • Authors:
  • MohammadAli Badamchizadeh;Sohrab Khanmohammadi;Ghasem Alizadeh;Ali Aghagolzadeh;Ghader Karimian

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper deals with stability analysis of hybrid systems. Such systems are characterized by a combination of continuous dynamics and logic based switching between discrete modes. Lyapunov theory is a well known methodology for the stability analysis of linear and nonlinear systems in control system literature. Construction of Lyapunov functions for hybrid systems is generally a difficult task, but once these functions are defined, stabilization of the system is straight-forward. The sum of squares (SOS) decomposition and semidefinite programming has also provided an efficient methodology for analysis of nonlinear systems. The computational method used in this paper relies on the SOS decomposition of multivariate polynomials. By using SOS, we construct a (some) Lyapunov function(s) for the hybrid system. The reduction techniques provide numerical solution of large-scale instances; otherwise they will be practically unsolvable. The introduced method can be used for hybrid systems with linear or nonlinear vector fields. Some examples are given to demonstrate the capabilities of the proposed approach.