Image Segmentation Using Fuzzy Clustering with Spatial Constraints Based on Markov Random Field via Bayesian Theory

  • Authors:
  • Xiaohe Li;Taiyi Zhang;Zhan Qu

  • Affiliations:
  • -;-;-

  • Venue:
  • IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Image segmentation is an essential processing step for many image analysis applications. In this paper, a novel image segmentation algorithm using fuzzy C-means clustering (FCM) with spatial constraints based on Markov random field (MRF) via Bayesian theory is proposed. Due to disregard of spatial constraint information, the FCM algorithm fails to segment images corrupted by noise. In order to improve the robustness of FCM to noise, a powerful model for the membership functions that incorporates local correlation is given by MRF defined through a Gibbs function. Then spatial information is incorporated into the FCM by Bayesian theory. Therefore, the proposed algorithm has both the advantages of the FCM and MRF, and is robust to noise. Experimental results on the synthetic and real-world images are given to demonstrate the robustness and validity of the proposed algorithm.