Design of Asymmetric VQ Codebooks Incorporating Channel Coding

  • Authors:
  • Jong-Ki Han;Jae-Gon Kim

  • Affiliations:
  • -;-

  • Venue:
  • IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a communication system using vector quantization (VQ) and channel coding is considered. Here, a design scheme has been proposed to optimize source codebooks in the transmitter and the receiver. In the proposed algorithm, the overall distortion including both the quantization error and channel distortion is minimized. The proposed algorithm is different from the previous work by the facts that the channel encoder is used in the VQ-based communication system, and the source VQ codebook used in the transmitter is different from the one used by the receiver, i.e. asymmetric VQ system. And the bounded-distance decoding (BDD) technique is used to combat the ambiguousness in the channel decoder. We can see from the computer simulations that the optimized system based on the proposed algorithm outperforms a conventional system based on a symmetric VQ codebook. Also, the proposed algorithm enables a reliable image communication over noisy channels.