Learning of Finite Unions of Tree Patterns with Internal Structured Variables from Queries

  • Authors:
  • Satoshi Matsumoto;Takayoshi Shoudai;Tomoyuki Uchida;Tetsuhiro Miyahara;Yusuke Suzuki

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • IEICE - Transactions on Information and Systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

A linear term tree is defined as an edge-labeled rooted tree pattern with ordered children and internal structured variables whose labels are mutually distinct. A variable can be replaced with arbitrary edge-labeled rooted ordered trees. We consider the polynomial time learnability of finite unions of linear term trees in the exact learning model formalized by Angluin. The language L(t) of a linear term tree t is the set of all trees obtained from t by substituting arbitrary edge-labeled rooted ordered trees for all variables in t. Moreover, for a finite set S of linear term trees, we define L(S) = ∪t∈SL(t). A target of learning, denoted by T*, is a finite set of linear term trees, where the number of edge labels is infinite. In this paper, for any set T* of m linear term trees (m ≥ 0), we present a query learning algorithm which exactly identifies T* in polynomial time using at most 2mn2Restricted Subset queries and at most m + 1 Equivalence queries, where n is the maximum size of counterexamples. Finally, we note that finite sets of linear term trees are not learnable in polynomial time using Restricted Equivalence, Membership and Subset queries.