Simultaneous Transmission and Reception for Improvedwireless Network Performance

  • Authors:
  • D. W. Bliss;P. A. Parker;A. R. Margetts

  • Affiliations:
  • MIT Lincoln Laboratory, Lexington, MA 02420;MIT Lincoln Laboratory, Lexington, MA 02420;MIT Lincoln Laboratory, Lexington, MA 02420

  • Venue:
  • SSP '07 Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

One of the limiting factors in ad hoc wireless mesh networks using traditional physical layer techniques is the inability to transmit and receive at the same frequency simultaneously. As a consequence, careful time-slot or frequency-reuse planning is required. This has adverse network data-rate and latency implications. The focus of this paper is a demonstration of signal processing techniques that enable simultaneous transmission and reception. These techniques employ informed-transmittermultiple-input multiple-output (MIMO) links. A combination of adaptive transmit and receive antenna array approaches is exploited. A number of important types of networking limitations can be resolved given simultaneous transmit and receive technology. The first example is the simultaneous link problem. By employing transmit and receive spatial adaptivity, two links can operate in close proximity using the same frequency at the same time. Another example is the full duplex relay node. Using the same frequency for both links, a given node can simultaneously receive packets from one node while forwarding them to another. For practical systems, two issues dominate performance: channel estimation error, often caused by stale estimates of the channel at the transmitter, and dynamic range limitations of the transmitter and receiver. These issues are investigated. Theoretical, simulated, and experimental results are presented.