Admission control and scheduling for QoS guarantees for variable-bit-rate applications on wireless channels

  • Authors:
  • I-Hong Hou;P. R. Kumar

  • Affiliations:
  • University of Illinois, Urbana, IL, USA;University of Illinois, Urbana, IL, USA

  • Venue:
  • Proceedings of the tenth ACM international symposium on Mobile ad hoc networking and computing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Providing differentiated Quality of Service (QoS) over unreliable wireless channels is an important challenge for supporting several future applications. We analyze a model that has been proposed to describe the QoS requirements by four criteria: traffic pattern, channel reliability, delay bound, and throughput bound. We study this mathematical model and extend it to handle variable bit rate applications. We then obtain a sharp characterization of schedulability vis-a-vis latencies and timely throughput. Our results extend the results so that they are general enough to be applied on a wide range of wireless applications, including MPEG Variable-Bit-Rate (VBR) video streaming, VoIP with differentiated quality, and wireless sensor networks (WSN). Two major issues concerning QoS over wireless are admission control and scheduling. Based on the model incorporating the QoS criteria, we analytically derive a necessary and sufficient condition for a set of variable bit-rate clients to be feasible. Admission control is reduced to evaluating the necessary and sufficient condition. We further analyze two scheduling policies that have been proposed, and show that they are both optimal in the sense that they can fulfill every set of clients that is feasible by some scheduling algorithms. The policies are easily implemented on the IEEE 802.11 standard. Simulation results under various settings support the theoretical study.