Direct trimming of NURBS surfaces on the GPU

  • Authors:
  • Andre Schollmeyer;Bernd Fröhlich

  • Affiliations:
  • Bauhaus-Universität Weimar;Bauhaus-Universität Weimar

  • Venue:
  • ACM SIGGRAPH 2009 papers
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a highly efficient direct trimming technique for NURBS surfaces, which is applicable to tessellation-based rendering as well as ray tracing systems. The central idea is to split the trim curves into monotonic segments with respect to the two parameter dimensions of the surface patches. We use an optimized bisection method to classify a point with respect to each monotonic trim curve segment without performing an actual intersection test. Our hierarchical acceleration structure allows the use of a large number of such curve segments and performs the bisection method only for points contained in the bounding boxes of the curve segments. We have integrated our novel point classification scheme into a GPU-based NURBS ray casting system and implemented the entire trimmed NURBS rendering algorithm in a single OpenGL GLSL shader. The shader can handle surfaces and trim curves of arbitrary degrees, which allows the use of original CAD data without incorporating any approximations. Performance data confirms that our trimming approach can deal with hundreds of thousands of trim curves at interactive rates. Our point classification scheme can be applied to other application domains dealing with complex curved regions including flood fills, font rendering and vector graphics mapped on arbitrary surfaces.