On Global Model Checking Trees Generated by Higher-Order Recursion Schemes

  • Authors:
  • Christopher Broadbent;Luke Ong

  • Affiliations:
  • Computing Laboratory, Oxford University,;Computing Laboratory, Oxford University,

  • Venue:
  • FOSSACS '09 Proceedings of the 12th International Conference on Foundations of Software Science and Computational Structures: Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

Higher-order recursion schemes are systems of rewrite rules on typed non-terminal symbols, which can be used to define infinite trees. The Global Modal Mu-Calculus Model Checking Problem takes as input such a recursion scheme together with a modal μ -calculus sentence and asks for a finite representation of the set of nodes in the tree generated by the scheme at which the sentence holds. Using a method that appeals to game semantics, we show that for an order-n recursion scheme, one can effectively construct a non-deterministic order-n collapsible pushdown automaton representing this set. The level of the automaton is strict in the sense that in general no non-deterministic order-(n *** 1) automaton could do likewise (assuming the requisite hierarchy theorem). The question of determinisation is left open. As a corollary we can also construct an order-n collapsible pushdown automaton representing the constructible winning region of an order-n collapsible pushdown parity game.