Peer-to-Peer Optimization in Large Unreliable Networks with Branch-and-Bound and Particle Swarms

  • Authors:
  • Balázs Bánhelyi;Marco Biazzini;Alberto Montresor;Márk Jelasity

  • Affiliations:
  • University of Szeged, Hungary;University of Trento, Italy;University of Trento, Italy;University of Szeged and HAS, Hungary

  • Venue:
  • EvoWorkshops '09 Proceedings of the EvoWorkshops 2009 on Applications of Evolutionary Computing: EvoCOMNET, EvoENVIRONMENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, EvoNUM, EvoSTOC, EvoTRANSLOG
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Decentralized peer-to-peer (P2P) networks (lacking a GRID-style resource management and scheduling infrastructure) are an increasingly important computing platform. So far, little is known about the scaling and reliability of optimization algorithms in P2P environments. In this paper we present empirical results comparing two P2P algorithms for real-valued search spaces in large-scale and unreliable networks. Some interesting, and perhaps counter-intuitive findings are presented: for example, failures in the network can in fact significantly improve performance under some conditions. The two algorithms that are compared are a known distributed particle swarm optimization (PSO) algorithm and a novel P2P branch-and-bound (B&B) algorithm based on interval arithmetic. Although our B&B algorithm is not a black-box heuristic, the PSO algorithm is competitive in certain cases, in particular, in larger networks. Comparing two rather different paradigms for solving the same problem gives a better characterization of the limits and possibilities of optimization in P2P networks.