Multi-resolution Boosting for Classification and Regression Problems

  • Authors:
  • Chandan K. Reddy;Jin-Hyeong Park

  • Affiliations:
  • Department of Computer Science, Wayne State University, Detroit, USA MI-48202;Integrated Data Systems Department, Siemens Corporate Research, Princeton, USA NJ-08540

  • Venue:
  • PAKDD '09 Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Various forms of boosting techniques have been popularly used in many data mining and machine learning related applications. Inspite of their great success, boosting algorithms still suffer from a few open-ended problems that require closer investigation. The efficiency of any such ensemble technique significantly relies on the choice of the weak learners and the form of the loss function. In this paper, we propose a novel multi-resolution approach for choosing the weak learners during additive modeling. Our method applies insights from multi-resolution analysis and chooses the optimal learners at multiple resolutions during different iterations of the boosting algorithms. We demonstrate the advantages of using this novel framework for classification tasks and show results on different real-world datasets obtained from the UCI machine learning repository. Though demonstrated specifically in the context of boosting algorithms, our framework can be easily accommodated in general additive modeling techniques.