Simulation of a Jackson tandem network using state-dependent importance sampling

  • Authors:
  • D. I. Miretskiy;W. R. W. Scheinhardt;M. R. H. Mandjes

  • Affiliations:
  • University of Twente, The Netherlands;University of Twente, The Netherlands;The University of Amsterdam, The Netherlands

  • Venue:
  • Proceedings of the 3rd International Conference on Performance Evaluation Methodologies and Tools
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper considers importance sampling as a tool for rare-event simulation. The focus is on estimating the probability of overflow in the downstream queue of a Jackson two-node tandem queue. It is known that in this setting 'traditional' state-independent importance-sampling distributions perform poorly. We therefore concentrate on developing a state-dependent change of measure that is provably asymptotically efficient. More specific contributions are the following. (i) We concentrate on the probability of the second queue exceeding a certain predefined threshold before the system empties. Importantly, we identify an asymptotically efficient importance-sampling distribution for any initial state of the system. (ii) The choice of the importance-sampling distribution is backed up by appealing heuristics that are rooted in large-deviations theory. (iii) Our method for proving asymptotic efficiency is substantially more straightforward than some that have been used earlier.