Discrete-State Abstractions of Nonlinear Systems Using Multi-resolution Quantizer

  • Authors:
  • Yuichi Tazaki;Jun-Ichi Imura

  • Affiliations:
  • Tokyo Institute of Technology, Meguro, Tokyo, Japan;Tokyo Institute of Technology, Meguro, Tokyo, Japan

  • Venue:
  • HSCC '09 Proceedings of the 12th International Conference on Hybrid Systems: Computation and Control
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

This paper proposes a design method for discrete abstractions of nonlinear systems using multi-resolution quantizer, which is capable of handling state dependent approximation precision requirements. To this aim, we extend the notion of quantizer embedding, which has been proposed by the authors' previous works as a transformation from continuous-state systems to discrete-state systems, to a multi-resolution setting. Then, we propose a computational method that analyzes how a locally generated quantization error is propagated through the state space. Based on this method, we present an algorithm that generates a multi-resolution quantizer with a specified error precision by finite refinements. Discrete abstractions produced by the proposed method exhibit non-uniform distribution of discrete states and inputs.