An Adaptive Synchronization Technique for Parallel Simulation of Networked Clusters

  • Authors:
  • Ayose Falcon;Paolo Faraboschi;Daniel Ortega

  • Affiliations:
  • Hewlett-Packard Laboratories, ayose.falcon@hp.com;Hewlett-Packard Laboratories, paolo.faraboschi@hp.com;Hewlett-Packard Laboratories, daniel.ortega@hp.com

  • Venue:
  • ISPASS '08 Proceedings of the ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and software
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Computer clusters are a very cost-effective approach for high performance computing, but simulating a complete cluster is still an open research problem. The obvious approach - to parallelize individual node simulators - is complex and slow. Combining individual parallel simulators implies synchronizing their progress of time. This can be accomplished with a variety of parallel discrete event simulation techniques, but unfortunately any straightforward approach introduces a synchronization overhead causing up two orders of magnitude of slowdown with respect to the simulation speed of an individual node. In this paper we present a novel adaptive technique that automatically adjusts the synchronization boundaries. By dynamically relaxing accuracy over the least interesting computational phases we dramatically increase performance with a marginal loss of precision. For example, in the simulation of an 8-node cluster running NAMD (a parallel molecular dynamics application) we show an acceleration factor of 26x over the deterministic "ground truth" simulation, at less than a 1% accuracy error.