Proximal regularization for online and batch learning

  • Authors:
  • Chuong B. Do;Quoc V. Le;Chuan-Sheng Foo

  • Affiliations:
  • Stanford University, Stanford, CA;Stanford University, Stanford, CA;Institute for Infocomm Research, Singapore

  • Venue:
  • ICML '09 Proceedings of the 26th Annual International Conference on Machine Learning
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many learning algorithms rely on the curvature (in particular, strong convexity) of regularized objective functions to provide good theoretical performance guarantees. In practice, the choice of regularization penalty that gives the best testing set performance may result in objective functions with little or even no curvature. In these cases, algorithms designed specifically for regularized objectives often either fail completely or require some modification that involves a substantial compromise in performance. We present new online and batch algorithms for training a variety of supervised learning models (such as SVMs, logistic regression, structured prediction models, and CRFs) under conditions where the optimal choice of regularization parameter results in functions with low curvature. We employ a technique called proximal regularization, in which we solve the original learning problem via a sequence of modified optimization tasks whose objectives are chosen to have greater curvature than the original problem. Theoretically, our algorithms achieve low regret bounds in the online setting and fast convergence in the batch setting. Experimentally, our algorithms improve upon state-of-the-art techniques, including Pegasos and bundle methods, on medium and large-scale SVM and structured learning tasks.