A majorization-minimization algorithm for (multiple) hyperparameter learning

  • Authors:
  • Chuan-Sheng Foo;Chuong B. Do;Andrew Y. Ng

  • Affiliations:
  • Institute for Infocomm Research, Singapore;Stanford University, Stanford, CA;Stanford University, Stanford, CA

  • Venue:
  • ICML '09 Proceedings of the 26th Annual International Conference on Machine Learning
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a general Bayesian framework for hyperparameter tuning in L2-regularized supervised learning models. Paradoxically, our algorithm works by first analytically integrating out the hyperparameters from the model. We find a local optimum of the resulting non-convex optimization problem efficiently using a majorization-minimization (MM) algorithm, in which the non-convex problem is reduced to a series of convex L2-regularized parameter estimation tasks. The principal appeal of our method is its simplicity: the updates for choosing the L2-regularized subproblems in each step are trivial to implement (or even perform by hand), and each subproblem can be efficiently solved by adapting existing solvers. Empirical results on a variety of supervised learning models show that our algorithm is competitive with both grid-search and gradient-based algorithms, but is more efficient and far easier to implement.