An Improved Structured Light Inspection of Specular Surfaces Based on Quaternary Coding

  • Authors:
  • Chengkun Xue;Yankui Sun

  • Affiliations:
  • Department of Computer Science and Technology, Tsinghua University, Beijing, P.R. China 100084;Department of Computer Science and Technology, Tsinghua University, Beijing, P.R. China 100084

  • Venue:
  • MIRAGE '09 Proceedings of the 4th International Conference on Computer Vision/Computer Graphics CollaborationTechniques
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Structured light techniques with binary coding are practical to inspect the specular surfaces. The structured light approaches use a scanned array of point sources and images of the resulting reflected highlights to compute local surface orientation. Binary coding scheme is the classic scheme for efficiently coding the light sources. This paper proposes a novel quaternary coding scheme which is much more efficient than the classic binary coding scheme. In this scheme, polychromatic light sources are utilized and coded in quaternary scheme. Our experimental system is described in detail. The problem caused by the polychromatic light sources is discussed too. To solve the problem, we drew lesson from the erosion operator from the Mathematical Morphology and designed an effective algorithm. The experiment results show the new quaternary coding scheme not only keeps a very high accuracy, but also greatly improves the efficiency of the inspection of specular surface.