Minimum-Delay Load-Balancing through Non-parametric Regression

  • Authors:
  • Federico Larroca;Jean-Louis Rougier

  • Affiliations:
  • TELECOM ParisTech,Paris, Paris Cedex 13, France F-75634;TELECOM ParisTech,Paris, Paris Cedex 13, France F-75634

  • Venue:
  • NETWORKING '09 Proceedings of the 8th International IFIP-TC 6 Networking Conference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Network convergence and new applications running on end-hosts result in increasingly variable and unpredictable traffic patterns. By providing origin-destination pairs with several possible paths, load-balancing has proved itself an excellent tool to face this uncertainty. Formally, load-balancing is defined in terms of a convex link cost function of its load, where the objective is to minimize the total cost. Typically, the link queueing delay is used as this cost since it measures its congestion. Over-simplistic models are used to calculate it, which have been observed to result in suboptimal resource usage and total delay. In this paper we investigate the possibility of learning the delay function from measurements, thus converging to the actual minimum. A novel regression method is used to make the estimation, restricting the assumptions to the minimum (e.g. delay should increase with load). The framework is relatively simple to implement, and we discuss some possible variants.