Learning How to Propagate Using Random Probing

  • Authors:
  • Efstathios Stamatatos;Kostas Stergiou

  • Affiliations:
  • Department of Information and Communication Systems Engineering, University of the Aegean, Samos, Greece;Department of Information and Communication Systems Engineering, University of the Aegean, Samos, Greece

  • Venue:
  • CPAIOR '09 Proceedings of the 6th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In constraint programming there are often many choices regarding the propagation method to be used on the constraints of a problem. However, simple constraint solvers usually only apply a standard method, typically (generalized) arc consistency, on all constraints throughout search. Advanced solvers additionally allow for the modeler to choose among an array of propagators for certain (global) constraints. Since complex interactions exist among constraints, deciding in the modelling phase which propagation method to use on given constraints can be a hard task that ideally we would like to free the user from. In this paper we propose a simple technique towards the automation of this task. Our approach exploits information gathered from a random probing preprocessing phase to automatically decide on the propagation method to be used on each constraint. As we demonstrate, data gathered though probing allows for the solver to accurately differentiate between constraints that offer little pruning as opposed to ones that achieve many domain reductions, and also to detect constraints and variables that are amenable to certain propagation methods. Experimental results from an initial evaluation of the proposed method on binary CSPs demonstrate the benefits of our approach.