Autonomous Leaves Graph Applied to the Boundary Layer Problem

  • Authors:
  • Sanderson L. Oliveira;Mauricio Kischinhevsky

  • Affiliations:
  • Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil 24210-240;Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil 24210-240

  • Venue:
  • ICCS '09 Proceedings of the 9th International Conference on Computational Science: Part I
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In physics and fluid mechanics, the boundary layer is the fluid layer in the immediate vicinity of a bounding surface. It is important in many aerodynamic problems. This work presents a numerical simulation of the bidimensional laminar boundary-layer problem considering a steady incompressible flow with no-slip condition on the surface by Autonomous Leaves Graph based on finite volume discretizations. In addition, a Modified Hilbert Curve numbers the control volumes. Initially, the numerical solution of the flat-plate problem is compared to its analytical solution, namely Blasius Solution. Secondly, simulations of the flow along a NACA airfoil shape are presented. Computer experiments show that an adaptive mesh refinement using the Autonomous Leaves Graph with the Modified Hilbert Curve numbering is appropriate for a aerodynamic problem. Finally, results illustrate that the method provides a good trade-off between speed and accuracy.