Technical communique: MPC for tracking with optimal closed-loop performance

  • Authors:
  • A. Ferramosca;D. Limon;I. Alvarado;T. Alamo;E. F. Camacho

  • Affiliations:
  • Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n. 41092 Sevilla, Spain;Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n. 41092 Sevilla, Spain;Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n. 41092 Sevilla, Spain;Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n. 41092 Sevilla, Spain;Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n. 41092 Sevilla, Spain

  • Venue:
  • Automatica (Journal of IFAC)
  • Year:
  • 2009

Quantified Score

Hi-index 22.15

Visualization

Abstract

In the recent paper [Limon, D., Alvarado, I., Alamo, T., & Camacho, E.F. (2008). MPC for tracking of piece-wise constant references for constrained linear systems. Automatica, 44, 2382-2387], a novel predictive control technique for tracking changing target operating points has been proposed. Asymptotic stability of any admissible equilibrium point is achieved by adding an artificial steady state and input as decision variables, specializing the terminal conditions and adding an offset cost function to the functional. In this paper, the closed-loop performance of this controller is studied and it is demonstrated that the offset cost function plays an important role in the performance of the model predictive control (MPC) for tracking. Firstly, the controller formulation has been enhanced by considering a convex, positive definite and subdifferential function as the offset cost function. Then it is demonstrated that this formulation ensures convergence to an equilibrium point which minimizes the offset cost function. Thus, in case of target operation points which are not reachable steady states or inputs for the constrained system, the proposed control law steers the system to an admissible steady state (different to the target) which is optimal with relation to the offset cost function. Therefore, the offset cost function plays the role of a steady-state target optimizer which is built into the controller. On the other hand, optimal performance of the MPC for tracking is studied and it is demonstrated that under some conditions on both the offset and the terminal cost functions optimal closed-loop performance is locally achieved.