Statistics over features: EEG signals analysis

  • Authors:
  • Elif Derya íbeyli

  • Affiliations:
  • Department of Electrical and Electronics Engineering, Faculty of Engineering, TOBB Ekonomi ve Teknoloji íniversitesi, 06530 Söğütözü, Ankara, Turkey

  • Venue:
  • Computers in Biology and Medicine
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presented the usage of statistics over the set of the features representing the electroencephalogram (EEG) signals. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents, wavelet coefficients and the power levels of power spectral density (PSD) values obtained by eigenvector methods of the EEG signals were used as inputs of the MLPNN trained with Levenberg-Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.