How online simplification affects building blocks in genetic programming

  • Authors:
  • David Kinzett;Mark Johnston;Mengjie Zhang

  • Affiliations:
  • Victoria University of Wellington, Wellington, New Zealand;Victoria University of Wellington, Wellington, New Zealand;Victoria University of Wellington, Wellington, New Zealand

  • Venue:
  • Proceedings of the 11th Annual conference on Genetic and evolutionary computation
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper investigates the effect on building blocks during evolution of two online program simplification methods in genetic programming. The two simplification methods considered are algebraic simplification and numerical simplification. The building blocks considered are of a more general form (two and three level subtrees) than numeric constants only. Unlike most of the existing work which often uses simple symbolic regression tasks, this work considers classification tasks as examples. We develop a new method for encoding possible building blocks for the analysis. The results show that the two online program simplification methods can generate new diverse building blocks during evolution although they also destroy existing ones and that many of the existing building blocks are retained during evolution. Compared with the canonical genetic programming method, the two simplification methods can generate much smaller programs, use much shorter evolutionary training time and achieve comparable effectiveness performance.