Approximate inference in gaussian graphical models

  • Authors:
  • Alan S. Willsky;Dmitry M. Malioutov

  • Affiliations:
  • Massachusetts Institute of Technology;Massachusetts Institute of Technology

  • Venue:
  • Approximate inference in gaussian graphical models
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

The focus of this thesis is approximate inference in Gaussian graphical models. A graphical model is a family of probability distributions in which the structure of interactions among the random variables is captured by a graph. Graphical models have become a powerful tool to describe complex high-dimensional systems specified through local interactions. While such models are extremely rich and can represent a diverse range of phenomena, inference in general graphical models is a hard problem. In this thesis we study Gaussian graphical models, in which the joint distribution of all the random variables is Gaussian, and the graphical structure is exposed in the inverse of the covariance matrix. Such models are commonly used in a variety of fields, including remote sensing, computer vision, biology and sensor networks. Inference in Gaussian models reduces to matrix inversion, but for very large-scale models and for models requiring distributed inference, matrix inversion is not feasible. We first study a representation of inference in Gaussian graphical models in terms of computing sums of weights of walks in the graph—where means, variances and correlations can be represented as such walk-sums. This representation holds in a wide class of Gaussian models that we call walk-summable. We develop a walk-sum interpretation for a popular distributed approximate inference algorithm called loopy belief propagation (LBP), and establish conditions for its convergence. We also extend the walk-sum framework to analyze more powerful versions of LBP that trade off convergence and accuracy for computational complexity, and establish conditions for their convergence. Next we consider an efficient approach to find approximate variances in large scale Gaussian graphical models. Our approach relies on constructing a low-rank aliasing matrix with respect to the Markov graph of the model which can be used to compute an approximation to the inverse of the information matrix for the model. By designing this matrix such that only the weakly correlated terms are aliased, we are able to give provably accurate variance approximations. We describe a construction of such a low-rank aliasing matrix for models with short-range correlations, and a wavelet-based construction for models with smooth long-range correlations. We also establish accuracy guarantees for the resulting variance approximations. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)