Local Computation Schemes with Partially Ordered Preferences

  • Authors:
  • Hélène Fargier;Nic Wilson

  • Affiliations:
  • IRIT, Toulouse Cedex, France 31062;Cork Constraint Computation Centre, University College Cork, Ireland

  • Venue:
  • ECSQARU '09 Proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many computational problems linked to uncertainty and preference management can be expressed in terms of computing the marginal(s) of a combination of a collection of valuation functions. Shenoy and Shafer showed how such a computation can be performed using a local computation scheme. A major strength of this work is that it is based on an algebraic description: what is proved is the correctness of the local computation algorithm under a few axioms on the algebraic structure. The instantiations of the framework in practice make use of totally ordered scales. The present paper focuses on the use of partially ordered scales and examines how such scales can be cast in the Shafer-Shenoy framework and thus benefit from local computation algorithms. It also provides many examples of such scales, thus showing that each of the algebraic structures explored here is of interest.