Modeling and Analysis of Checkpoint I/O Operations

  • Authors:
  • Sarala Arunagiri;John T. Daly;Patricia J. Teller

  • Affiliations:
  • The University of Texas at El Paso,;The Center for Exceptional Computing,;The University of Texas at El Paso,

  • Venue:
  • ASMTA '09 Proceedings of the 16th International Conference on Analytical and Stochastic Modeling Techniques and Applications
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The large scale of current and next-generation massively parallel processing (MPP) systems presents significant challenges related to fault tolerance. For applications that perform periodic checkpointing, the choice of the checkpoint interval, the period between checkpoints, can have a significant impact on the execution time of the application and the number of checkpoint I/O operations performed by the application. These two metrics determine the frequency of checkpoint I/O operations performed by the application and, thereby, the contribution of the checkpoint operations to the demand made by the application on the I/O bandwidth of the computing system. Finding the optimal checkpoint interval that minimizes the wall clock execution time has been a subject of research over the last decade. In this paper, we present a simple, elegant, and accurate analytical model of a complementary performance metric - the aggregate number of checkpoint I/O operations. We present an analytical model of the expected number of checkpoint I/O operations and simulation studies that validate the analytical model. Insights provided by a mathematical analysis of this model, combined with existing models for wall clock execution time, facilitate application programmers in making a well informed choice of checkpoint interval that represents an appropriate trade off between execution time and number of checkpoint I/O operations. We illustrate the existence of such propitious checkpoint intervals using parameters of four MPP systems, SNL's Red Storm, ORNL's Jaguar, LLNL's Blue Gene/L (BG/L), and a theoretical Petaflop system.