Limits and Applications of Group Algebras for Parameterized Problems

  • Authors:
  • Ioannis Koutis;Ryan Williams

  • Affiliations:
  • Computer Science Department, Carnegie Mellon University, Pittsburgh, USA;School of Mathematics, Institute for Advanced Study, Princeton, USA

  • Venue:
  • ICALP '09 Proceedings of the 36th International Colloquium on Automata, Languages and Programming: Part I
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The algebraic framework introduced in [Koutis, Proc. of the 35 th ICALP 2008] reduces several combinatorial problems in parameterized complexity to the problem of detecting multilinear degree-k monomials in polynomials presented as circuits. The best known (randomized) algorithm for this problem requires only O *(2 k ) time and oracle access to an arithmetic circuit, i.e. the ability to evaluate the circuit on elements from a suitable group algebra. This algorithm has been used to obtain the best known algorithms for several parameterized problems. In this paper we use communication complexity to show that the O *(2 k ) algorithm is essentially optimal within this evaluation oracle framework. On the positive side, we give new applications of the method: finding a copy of a given tree on k nodes, a spanning tree with at least k leaves, a minimum set of nodes that dominate at least t nodes, and an m -dimensional k -matching. In each case we achieve a faster algorithm than what was known. We also apply the algebraic method to problems in exact counting. Among other results, we show that a combination of dynamic programming and a variation of the algebraic method can break the trivial upper bounds for exact parameterized counting in fairly general settings.