A Model-Based Algorithm for Optimizing I/O Intensive Applications in Clouds Using VM-Based Migration

  • Authors:
  • Kento Sato;Hitoshi Sato;Satoshi Matsuoka

  • Affiliations:
  • -;-;-

  • Venue:
  • CCGRID '09 Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Federated storage resources in geographically distributed environments are becoming viable platforms for data-intensive cloud and grid applications. To improveI /O performance in such environments, we propose a novel model-based I/O performance optimization algorithm for data-intensive applications running on a virtual cluster, which determines virtual machine (VM) migration strategies,i.e., when and where a VM should be migrated, while minimizing the expected value of file access time. We solve this problem as a shortest path problem of a weighted direct acyclic graph (DAG), where the weighted vertex represents a location of a VM and expected file access time from the location, and the weighted edge represents a migration of a VM and time. We construct the DAG from our markov model which represents the dependency of files. Our simulation-based studies suggest that our proposed algorithm can achieve higher performance than simple techniques, such as ones that never migrate VMs: 38% or always migrate VMs onto the locations that hold target files: 47%.