Applications of parametric searching in geometric optimization

  • Authors:
  • Pankaj K. Agarwal;Micha Sharir;Sivan Toledo

  • Affiliations:
  • -;-;-

  • Venue:
  • SODA '92 Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms
  • Year:
  • 1992

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present several applications in computational geometry of Megiddo's parametric searching technique. These applications include; (1) Finding the minimum Hausdorff distance in the Euclidean metric between two polygonal regions under translation; (2) Computing the biggest line segment that can be placed inside a simple polygon; (3) Computing the smallest width annulus that can contain a given set of points in the plane; (4) Solving the 1-segment center problem—given a set of points in the plane, find a placement for a given line segment (under translation and rotation) which minimizes the largest distance from the segment to the given points; (5) Given a set of n points in 3-space, finding the largest radius r such that if we place a ball of radius r around each point, no segment connecting a pair of points is intersected by a third ball. Besides obtaining efficient solutions to all these problems (which, in every case, either improve considerably previous solutions or are the first non-trivial solutions to these problems), our goal is to demonstrate the versatility of the parametric searching technique.