Temperature discovery search

  • Authors:
  • Martin Müller;Markus Enzenberger;Jonathan Schaeffer

  • Affiliations:
  • Department of Computing Science, University of Alberta, Edmonton, Canada;Department of Computing Science, University of Alberta, Edmonton, Canada;Department of Computing Science, University of Alberta, Edmonton, Canada

  • Venue:
  • AAAI'04 Proceedings of the 19th national conference on Artifical intelligence
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Temperature Discovery Search (TDS) is a new minimax-based game tree search method designed to compute or approximate the temperature of a combinatorial game. TDS is based on the concept of an enriched environment, where a combinatorial game G is embedded in an environment consisting of a large set of simple games of decreasing temperature. Optimal play starts in the environment, but eventually must switch to G. TDS finds the temperature of G by determining when this switch must happen. Both exact and heuristic versions of TDS are described and evaluated experimentally. In experiments with sum games in Amazons, TDS outperforms an αβ searcher.