On the difficulty of achieving equilibrium in interactive POMDPs

  • Authors:
  • Prashant Doshi;Piotr J. Gmytrasiewicz

  • Affiliations:
  • Department of Computer Science, University of Georgia, Athens, GA;Department of Computer Science, University of Illinois at Chicago, Chicago, IL

  • Venue:
  • AAAI'06 proceedings of the 21st national conference on Artificial intelligence - Volume 2
  • Year:
  • 2006

Quantified Score

Hi-index 0.01

Visualization

Abstract

We analyze the asymptotic behavior of agents engaged in an infinite horizon partially observable stochastic game as formalized by the interactive POMDP framework. We show that when agents' initial beliefs satisfy a truth compatibility condition, their behavior converges to a subjective Ε-equilibrium in a finite time, and subjective equilibrium in the limit. This result is a generalization of a similar result in repeated games, to partially observable stochastic games. However, it turns out that the equilibrating process is difficult to demonstrate computationally because of the difficulty in coming up with initial beliefs that are both natural and satisfy the truth compatibility condition. Our results, therefore, shed some negative light on using equilibria as a solution concept for decision making in partially observable stochastic games.