An Attacker-Defender Game for Honeynets

  • Authors:
  • Jin-Yi Cai;Vinod Yegneswaran;Chris Alfeld;Paul Barford

  • Affiliations:
  • University of Wisconsin, Madison,;SRI International, Menlo Park,;Nemean Networks, Madison;University of Wisconsin, Madison, and Nemean Networks, Madison

  • Venue:
  • COCOON '09 Proceedings of the 15th Annual International Conference on Computing and Combinatorics
  • Year:
  • 2009

Quantified Score

Hi-index 0.02

Visualization

Abstract

A honeynet is a portion of routed but otherwise unused address space that is instrumented for network traffic monitoring. It is an invaluable tool for understanding unwanted Internet traffic and malicious attacks. We formalize the problem of defending honeynets from systematic mapping (a serious threat to their viability) as a simple two-person game. The objective of the Attacker is to identify a honeynet with a minimum number of probes. The objective of the Defender is to maintain a honeynet for as long as possible before moving it to a new location within a larger address space. Using this game theoretic framework, we describe and prove optimal or near-optimal strategies for both Attacker and Defender. This is the first mathematically rigorous study of this increasingly important problem on honeynet defense. Our theoretical ideas provide the first formalism of the honeynet monitoring problem, illustrate the viability of network address shuffling, and inform the design of next generation honeynet defense.