Approximation Algorithms for Key Management in Secure Multicast

  • Authors:
  • Agnes Chan;Rajmohan Rajaraman;Zhifeng Sun;Feng Zhu

  • Affiliations:
  • Northeastern University, Boston, USA 02115;Northeastern University, Boston, USA 02115;Northeastern University, Boston, USA 02115;Cisco Systems, San Jose, USA

  • Venue:
  • COCOON '09 Proceedings of the 15th Annual International Conference on Computing and Combinatorics
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many data dissemination and publish-subscribe systems that guarantee the privacy and authenticity of the participants rely on symmetric key cryptography. An important problem in such a system is to maintain the shared group key as the group membership changes. We consider the problem of determining a key hierarchy that minimizes the average communication cost of an update, given update frequencies of the group members and an edge-weighted undirected graph that captures routing costs. We first present a polynomial-time approximation scheme for minimizing the average number of multicast messages needed for an update. We next show that when routing costs are considered, the problem is NP-hard even when the underlying routing network is a tree network or even when every group member has the same update frequency. Our main result is a polynomial time constant-factor approximation algorithm for the general case where the routing network is an arbitrary weighted graph and group members have nonuniform update frequencies.