Synchronization analysis of coupled connected neural networks with mixed time delays

  • Authors:
  • Qiankun Song

  • Affiliations:
  • Yangtze Center of Mathematics, Sichuan University, Chengdu 610064, China and Department of Mathematics, Chongqing Jiaotong University, Chongqing 400074, China

  • Venue:
  • Neurocomputing
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper, the global exponential synchronization of coupled connected neural networks with both discrete and distributed delays is investigated under mild condition, assuming neither the differentiability and strict monotonicity for the activation functions nor the diagonal for the inner coupling matrices. By employing a new Lyapunov-Krasovskii functional, applying the theory of Kronecker product of matrices and the linear matrix inequality (LMI) technique, several delay-dependent sufficient conditions in LMI form are obtained for global exponential synchronization of such systems. Moreover, the decay rate is estimated. The proposed LMI approach has the advantage of considering the difference of neuronal excitatory and inhibitory efforts, which is also computationally efficient as it can be solved numerically using efficient Matlab LMI toolbox, and no tuning of parameters is required. In addition, the proposed results generalize and improve the earlier publications. An example with simulation is given to show the effectiveness of the obtained results.