Markerless 3D Face Tracking

  • Authors:
  • Christian Walder;Martin Breidt;Heinrich Bülthoff;Bernhard Schölkopf;Cristóbal Curio

  • Affiliations:
  • Max Planck Institute for Biological Cybernetics, Tübingen, Germany and Informatics and Mathematical Modelling, Technical University of Denmark,;Max Planck Institute for Biological Cybernetics, Tübingen, Germany;Max Planck Institute for Biological Cybernetics, Tübingen, Germany;Max Planck Institute for Biological Cybernetics, Tübingen, Germany;Max Planck Institute for Biological Cybernetics, Tübingen, Germany

  • Venue:
  • Proceedings of the 31st DAGM Symposium on Pattern Recognition
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects are presented.