Experiences in developing and applying a software engineering technology testbed

  • Authors:
  • Alexander Lam;Barry Boehm

  • Affiliations:
  • University of Southern California, Los Angeles, USA 90089;University of Southern California, Los Angeles, USA 90089

  • Venue:
  • Empirical Software Engineering
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

A major problem in empirical software engineering is to determine or ensure comparability across multiple sources of empirical data. This paper summarizes experiences in developing and applying a software engineering technology testbed. The testbed was designed to ensure comparability of empirical data used to evaluate alternative software engineering technologies, and to accelerate the technology maturation and transition into project use. The requirements for such software engineering technology testbeds include not only the specifications and code, but also the package of instrumentation, scenario drivers, seeded defects, experimentation guidelines, and comparative effort and defect data needed to facilitate technology evaluation experiments. The requirements and architecture to build a particular software engineering technology testbed to help NASA evaluate its investments in software dependability research and technology have been developed and applied to evaluate a wide range of technologies. The technologies evaluated came from the fields of architecture, testing, state-model checking, and operational envelopes. This paper will present for the first time the requirements and architecture of the software engineering technology testbed. The results of the technology evaluations will be analyzed from a point of view of how researchers benefitted from using the SETT. The researchers just reported how their technology performed in their original findings. The testbed evaluation showed (1) that certain technologies were complementary and cost-effective to apply; (2) that the testbed was cost-effective to use by researchers within a well-specified domain of applicability; (3) that collaboration in testbed use by researchers and the practitioners resulted comparable empirical data and in actions to accelerate technology maturity and transition into project use, as shown in the AcmeStudio evaluation; and (4) that the software engineering technology testbed's requirements and architecture were suitable for evaluating technologies and accelerating their maturation and transition into project use.