Graph-Based Object Class Discovery

  • Authors:
  • Shengping Xia;Edwin R. Hancock

  • Affiliations:
  • ATR Lab, School of Electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, P.R. China 410073;Department of Computer Science, University of York, York, UK YO10 5DD

  • Venue:
  • CAIP '09 Proceedings of the 13th International Conference on Computer Analysis of Images and Patterns
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We are interested in the problem of discovering the set of object classes present in a database of images using a weakly supervised graph-based framework. Rather than making use of the "Bag-of-Features (BoF)" approach widely used in current work on object recognition, we represent each image by a graph using a group of selected local invariant features. Using local feature matching and iterative Procrustes alignment, we perform graph matching and compute a similarity measure. Borrowing the idea of query expansion , we develop a similarity propagation based graph clustering (SPGC) method. Using this method class specific clusters of the graphs can be obtained. Such a cluster can be generally represented by using a higher level graph model whose vertices are the clustered graphs, and the edge weights are determined by the pairwise similarity measure. Experiments are performed on a dataset, in which the number of images increases from 1 to 50K and the number of objects increases from 1 to over 500. Some objects have been discovered with total recall and a precision 1 in a single cluster.