Exact Delaunay graph of smooth convex pseudo-circles: general predicates, and implementation for ellipses

  • Authors:
  • Ioannis Z. Emiris;Elias P. Tsigaridas;George M. Tzoumas

  • Affiliations:
  • University of Athens, Athens, Hellas;INRIA Méditerranée, Sophia-Antipolis, France;University of Athens, Athens, Hellas

  • Venue:
  • 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We examine the problem of computing exactly the Delaunay graph (and the dual Voronoi diagram) of a set of, possibly intersecting, smooth convex pseudo-circles in the Euclidean plane, given in parametric form. Pseudo-circles are (convex) sites, every pair of which has at most two intersecting points. The Delaunay graph is constructed incrementally. Our first contribution is to propose robust end efficient algorithms for all required predicates, thus generalizing our earlier algorithms for ellipses, and we analyze their algebraic complexity, under the exact computation paradigm. Second, we focus on InCircle, which is the hardest predicate, and express it by a simple sparse 5 X 5 polynomial system, which allows for an efficient implementation by means of successive Sylvester resultants and a new factorization lemma. The third contribution is our cgal-based c++ software for the case of ellipses, which is the first exact implementation for the problem. Our code spends about 98 sec to construct the Delaunay graph of 128 non-intersecting ellipses, when few degeneracies occur. It is faster than the cgal segment Delaunay graph, when ellipses are approximated by k-gons for k 15.