Development of high performance scientific components for interoperability of computing packages

  • Authors:
  • Teena P. Gulabani;Masha Sosonkina;Mark S. Gordon;Curtis L. Janssen;Joseph P. Kenny;Heather Netzloff;Theresa L. Windus

  • Affiliations:
  • -;-;-;-;-;-;-

  • Venue:
  • SpringSim '09 Proceedings of the 2009 Spring Simulation Multiconference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. Developing a chemistry algorithm is a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of our work. We achieve this interoperability by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this paper, we present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. This paper also demonstrates the performance evaluation of these CCA compliant components to show the feasibility of the proposed approach and finally discusses the current research issues.