Low distortion spanners

  • Authors:
  • Seth Pettie

  • Affiliations:
  • University of Michigan, Ann Arbor, MI

  • Venue:
  • ACM Transactions on Algorithms (TALG)
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

A spanner of an undirected unweighted graph is a subgraph that approximates the distance metric of the original graph with some specified accuracy. Specifically, we say H ⊆ G is an f-spanner of G if any two vertices u,v at distance d in G are at distance at most f(d) in H. There is clearly some trade-off between the sparsity of H and the distortion function f, though the nature of the optimal trade-off is still poorly understood. In this article we present a simple, modular framework for constructing sparse spanners that is based on interchangable components called connection schemes. By assembling connection schemes in different ways we can recreate the additive 2- and 6-spanners of Aingworth et al. [1999] and Baswana et al. [2009], and give spanners whose multiplicative distortion quickly tends toward 1. Our results rival the simplicity of all previous algorithms and provide substantial improvements (up to a doubly exponential reduction in edge density) over the comparable spanners of Elkin and Peleg [2004] and Thorup and Zwick [2006].