Optimized multipath network coding in lossy wireless networks

  • Authors:
  • Xinyu Zhang;Baochun Li

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Toronto;Department of Electrical and Computer Engineering, University of Toronto

  • Venue:
  • IEEE Journal on Selected Areas in Communications - Special issue on network coding for wireless communication networks
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Network coding has been a prominent approach to a series of problems that used to be considered intractable with traditional transmission paradigms. Recent work on network coding includes a substantial number of optimization based protocols, but mostly for wireline multicast networks. In this paper, we consider maximizing the benefits of network coding for unicast sessions in lossy wireless environments. We propose Optimized Multipath Network Coding (OMNC), a rate control protocol that dramatically improves the throughput of lossy wireless networks. OMNC employs multiple paths to push coded packets to the destination, and uses the broadcast MAC to deliver packets between neighboring nodes. The coding and broadcast rate is allocated to transmitters by a distributed optimization algorithm that maximizes the advantage of network coding while avoiding congestion. With extensive experiments on an emulation testbed, we find that OMNC achieves more than two-fold throughput increase on average compared to traditional best path routing, and significant improvement over existing multipath routing protocols with network coding. The performance improvement is notable not only for one unicast session, but also when multiple concurrent unicast sessions coexist in the network.