Integrated speech enhancement method using noise suppression and dereverberation

  • Authors:
  • Takuya Yoshioka;Tomohiro Nakatani;Masato Miyoshi

  • Affiliations:
  • NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kyoto, Japan;NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kyoto, Japan;NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kyoto, Japan

  • Venue:
  • IEEE Transactions on Audio, Speech, and Language Processing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes a method for enhancing speech signals contaminated by room reverberation and additive stationary noise. The following conditions are assumed. 1) Short-time spectral components of speech and noise are statistically independent Gaussian random variables. 2) A room's convolutive system is modeled as an autoregressive system in each frequency band. 3) A short-time power spectral density of speech is modeled as an all-pole spectrum, while that of noise is assumed to be time-invariant and known in advance. Under these conditions, the proposed method estimates the parameters of the convolutive system and those of the all-pole speech model based on the maximum likelihood estimation method. The estimated parameters are then used to calculate the minimum mean square error estimates of the speech spectral components. The proposed method has two significant features. 1) The parameter estimation part performs noise suppression and dereverberation alternately. (2) Noise-free reverberant speech spectrum estimates, which are transferred by the noise suppression process to the dereverberation process, are represented in the form of a probability distribution. This paper reports the experimental results of 1500 trials conducted using 500 different utterances. The reverberation time RT60 was 0.6 s, and the reverberant signal to noise ratio was 20, 15, or 10 dB. The experimental results show the superiority of the proposed method over the sequential performance of the noise suppression and dereverberation processes.