Increase and subjective evaluation of feedback stability in hearing aids by a binaural coherence-based noise reduction scheme

  • Authors:
  • Giso Grimm;Volker Hohmann;Birger Kollmeier

  • Affiliations:
  • Medizinische Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg;Medizinische Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg;Medizinische Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg

  • Venue:
  • IEEE Transactions on Audio, Speech, and Language Processing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The effect of a binaural coherence-based noise reduction scheme on the feedback stability margin and sound quality in hearing aids has been analyzed. For comparison, a conventional adaptive feedback canceler (AFC) and the combination of the adaptive filter with the binaural coherence filter have been tested. The observed quantities are feedback stability and target signal attenuation. An objective measure of feedback stability, i.e., the added stable gain (ASG) was obtained for a number of algorithmic settings and compared to a subjective measure of feedback stability, the added tolerable gain (ATG). In an attempt to eliminate the subjective bias in estimating the ATG, the "unbiased added gain" (UAG) is introduced as a new method. Both, objective and subjective measures give similar results for feedback stability. This allows for a valid comparison across different feedback reduction schemes both in isolation and in combination: whereas the ASG of the coherence filter without combination with AFC is negligible, the results indicate that a robust feedback suppression in hearing aids can be achieved if the benefit of de-correlation and the head-shadow effect in binaural hearing aids is used in an advantageous way. The ASG reaches 23 dB for the best combination at the expense of an average target signal attenuation of 15 dB at critical frequencies. The attribute of the coherence filter is that it adaptively limits the maximum gain before feedback becomes audible. The UAG analysis revealed that subjects used a stable quality criterion across the conditions tested and that the group of subjects covered a large range of individual quality criteria.