Evaluation and design of irregular LDPC codes using ACE spectrum

  • Authors:
  • Dejan Vukobratovic;Vojin Šenk

  • Affiliations:
  • Dept. of Power, Electronics and Communication Engineering, University of Novi Sad, Novi Sad, Serbia;Dept. of Power, Electronics and Communication Engineering, University of Novi Sad, Novi Sad, Serbia

  • Venue:
  • IEEE Transactions on Communications
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The construction of finite-length irregular LDPC codes with low error floors is currently an attractive research problem. In particular, for the binary erasure channel (BEC), the problem is to find the elements of selected irregular LDPC code ensembles with the size of their minimum stopping set being maximized. Due to the lack of analytical solutions to this problem, a simple but powerful heuristic design algorithm, the approximate cycle extrinsic message degree (ACE) constrained design algorithm, has recently been proposed. Building upon the ACE metric associated with a cycle in a code graph, we introduce the ACE spectrum of LDPC codes as a useful tool for evaluation of codes from selected irregular LDPC code ensembles. Using the ACE spectrum, we generalize the ACE constrained design algorithm, making it more flexible and efficient. We justify the ACE spectrum approach through examples and simulation results.