A new RBF neural network with boundary value constraints

  • Authors:
  • Xia Hong;Sheng Chen

  • Affiliations:
  • School of Systems Engineering, University of Reading, Berkshire, UK;School of Electronics and Computer Science, University of Southampton, Southampton, UK

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics - Special issue on human computing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-theparameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.