Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation

  • Authors:
  • Ai-Mei Huang;Truong Nguyen

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA;Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA

  • Venue:
  • IEEE Transactions on Image Processing
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.