New rate-2 STBC design for 2 TX with reduced-complexity maximum likelihood decoding

  • Authors:
  • Payam Rabiei;Naofal Al-Dhahir;Robert Calderbank

  • Affiliations:
  • Department of Electrical Engineering and Computer Science, University of Texas at Dallas;Department of Electrical Engineering and Computer Science, University of Texas at Dallas;Department of Electrical Engineering, Princeton University

  • Venue:
  • IEEE Transactions on Wireless Communications
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

We propose a new full-rate space-time block code (STBC) for two transmit antennas which can be designed to achieve maximum diversity or maximum capacity while enjoying optimized coding gain and reduced-complexity maximum-likelihood (ML) decoding. The maximum transmit diversity (MTD) construction provides a diversity order of 2Nr for any number of receive antennas Nr at the cost of channel capacity loss. The maximum channel capacity (MCC) construction preserves the mutual information between the transmit and the received vectors while sacrificing diversity. The system designer can switch between the two constructions through a simple parameter change based on the operating signal-to-noise ratio (SNR), signal constellation size and number of receive antennas. Thanks to their special algebraic structure, both constructions enjoy low-complexity ML decoding proportional to the square of the signal constellation size making them attractive alternatives to existing full-diversity full-rate STBCs in [6], [3] which have high ML decoding complexity proportional to the fourth order of the signal constellation size. Furthermore, we design a differential transmission scheme for our proposed STBC, derive the exact ML differential decoding rule, and compare its performance with competitive schemes. Finally, we investigate transceiver design and performance of our proposed STBC in spatial multiple-access scenarios and over frequency-selective channels.