Linear processing and sum throughput in the multiuser MIMO downlink?

  • Authors:
  • Adam J. Tenenbaum;Raviraj S. Adve

  • Affiliations:
  • Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada;Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada

  • Venue:
  • IEEE Transactions on Wireless Communications
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

We consider linear precoding and decoding in the downlink of a multiuser multiple-input, multiple-output (MIMO) system, wherein each user may receive more than one data stream. We propose several mean squared error (MSE) based criteria for joint transmit-receive optimization and establish a series of relationships linking these criteria to the signal-to-interference-plus-noise ratios of individual data streams and the information theoretic channel capacity under linear minimum MSE decoding. In particular, we show that achieving the maximum sum throughput is equivalent to minimizing the product of MSE matrix determinants (PDetMSE). Since the PDetMSE minimization problem does not admit a computationally efficient solution, a simplified scalar version of the problem is considered that minimizes the product of mean squared errors (PMSE). An iterative algorithm is proposed to solve the PMSE problem, and is shown to provide near-optimal performance with greatly reduced computational complexity. Our simulations compare the achievable sum rates under linear precoding strategies to the sum capacity for the broadcast channel.