On-line evolutionary exponential family mixture

  • Authors:
  • Jianwen Zhang;Yangqiu Song;Gang Chen;Changshui Zhang

  • Affiliations:
  • State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China;State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China;State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China;State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China

  • Venue:
  • IJCAI'09 Proceedings of the 21st international jont conference on Artifical intelligence
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper deals with evolutionary clustering, which refers to the problem of clustering data with distribution drifting along time. Starting from a density estimation view to clustering problems, we propose two general on-line frameworks. In the first framework, i.e., historical data dependent (HDD), current model distribution is designed to approximate both current and historical data distributions. In the second framework, i.e., historical model dependent (HMD), current model distribution is designed to approximate both current data distribution and historical model distribution. Both frameworks are based on the general exponential family mixture (EFM) model. As a result, all conventional clustering algorithms based on EFMs can be extended to evolutionary setting under the two frameworks. Empirical results validate the two frameworks.