Optimal stochastic policies for distributed data aggregation in wireless sensor networks

  • Authors:
  • Zhenzhen Ye;Alhussein A. Abouzeid;Jing Ai

  • Affiliations:
  • Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY;Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY;Jupiter Networks, Sunnyvale, CA

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

The scenario of distributed data aggregation in wireless sensor networks is considered, where sensors can obtain and estimate the information of the whole sensing field through local data exchange and aggregation. An intrinsic tradeoff between energy and aggregation delay is identified, where nodes must decide optimal instants for forwarding samples. The samples could be from a node's own sensor readings or an aggregation with samples forwarded from neighboring nodes. By considering the randomness of the sample arrival instants and the uncertainty of the availability of the multiaccess communication channel, a sequential decision process model is proposed to analyze this problem and determine optimal decision policies with local information. It is shown that, once the statistics of the sample arrival and the availability of the channel satisfy certain conditions, there exist optimal control-limit-type policies that are easy to implement in practice. In the case that the required conditions are not satisfied, the performance loss of using the proposed control-limit-type policies is characterized. In general cases, a finite-state approximation is proposed and two on-line algorithms are provided to solve it. Practical distributed data aggregation simulations demonstrate the effectiveness of the developed policies, which also achieve a desired energy-delay tradeoff.